A corpus-based speech synthesis system with emotion
نویسندگان
چکیده
We propose a new approach to synthesizing emotional speech by a corpus-based concatenative speech synthesis system (ATR CHATR) using speech corpora of emotional speech. In this study, neither emotional-dependent prosody prediction nor signal processing per se is performed for emotional speech. Instead, a large speech corpus is created per emotion to synthesize speech with the appropriate emotion by simple switching between the emotional corpora. This is made possible by the normalization procedure incorporated in CHATR that transforms its standard predicted prosody range according to the source database in use. We evaluate our approach by creating three kinds of emotional speech corpus (anger, joy, and sadness) from recordings of a male and a female speaker of Japanese. The acoustic characteristics of each corpus are different and the emotions identifiable. The acoustic characteristics of each emotional utterance synthesized by our method show clear correlations to those of each corpus. Perceptual experiments using synthesized speech confirmed that our method can synthesize recognizably emotional speech. We further evaluated the method s intelligibility and the overall impression it gives to the listeners. The results show that the proposed method can synthesize speech with a high intelligibility and gives a favorable impression. With these encouraging results, we have developed a workable text-to-speech system with emotion to support the immediate needs of nonspeaking individuals. This paper describes the proposed method, the design and acoustic characteristics of the corpora, and the results of the perceptual evaluations. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملPrediction of Emotions from Text using Sentiment Analysis for Expressive Speech Synthesis
The generation of expressive speech is a great challenge for text-to-speech synthesis in audiobooks. One of the most important factors is the variation in speech emotion or voice style. In this work, we developed a method to predict the emotion from a sentence so that we can convey it through the synthetic voice. It consists of combining a standard emotion-lexicon based technique with the polar...
متن کاملAcoustic nature and perceptual testing of corpora of emotional speech
This paper proposes three corpora of emotional speech in Japanese that maximize the expression of each emotion (expressing joy, anger, and sadness) for use with CHATR, the concatenative speech synthesis system being developed at ATR. A perceptual experiment was conducted using the synthesized speech generated from each emotion corpus and the results proved to be significantly identifiable. Auth...
متن کاملOn the limitations of voice conversion techniques in emotion identification tasks
The growing interest in emotional speech synthesis urges effective emotion conversion techniques to be explored. This paper estimates the relevance of three speech components (spectral envelope, residual excitation and prosody) for synthesizing identifiable emotional speech, in order to be able to customize voice conversion techniques to the specific characteristics of each emotion. The analysi...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Speech Communication
دوره 40 شماره
صفحات -
تاریخ انتشار 2003